Low Power and High Performance Full Adder in Deep Submicron Technology

نویسندگان

  • Bamin Gambo
  • Lod Tapin
  • Saratchandra Hanjabam
چکیده

The leakage power dissipation problem of electronics systems has attracted a lot of attention from engineers and researchers over the years. Increasing leakage current in deep-sub micrometer regimes is becoming a significant contributor to power dissipation of CMOS circuits as threshold voltage, channel length, and gate oxide thickness are reduced. Consequently, the identification and modeling of different leakage components is very important for estimation and reduction of leakage power, especially for low-power applications. This work presents the performance of different full adders in deep-submicron using 45nnm, 65nm and 90nm technology. Finally, the paper explores different circuit techniques to estimate the leakage power consumption has been presented. An illustrative example has been provided to demonstrate the design and simulation of CMOS with various technologies using DSCH and MICROWIND program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetrical, Low-Power, and High-Speed 1-Bit Full Adder Cells Using 32nm Carbon Nanotube Field-effect Transistors Technology (TECHNICAL NOTE)

Carbon nanotube field-effect transistors (CNFETs) are a promising candidate to replace conventional metal oxide field-effect transistors (MOSFETs) in the time to come. They have considerable characteristics such as low power consumption and high switching speed. Full adder cell is the main part of the most digital systems as it is building block of subtracter, multiplier, compressor, and other ...

متن کامل

A Low Power Full Adder Cell based on Carbon Nanotube FET for Arithmetic Units

In this paper, a full adder cell based on majority function using Carbon-Nanotube Field-Effect Transistor (CNFET) technology is presented. CNFETs possess considerable features that lead to their wide usage in digital circuits design. For the design of the cell input capacitors and inverters are used. These kinds of design method cause a high degree of regularity and simplicity. The proposed des...

متن کامل

Taguchi Approach and Response Surface Analysis for Design of a High-performance Single-walled Carbon Nanotube Bundle Interconnects in a Full Adder

In this study, it was attempted to design a high-performance single-walled carbon nanotube (SWCNT) bundle interconnects in a full adder. For this purpose, the circuit performance was investigated using simulation in HSPICE software and considering the technology of 32-nm. Next, the effects of geometric parameters including the diameter of a nanotube, distance between nanotubes in a bundle, and ...

متن کامل

A Simple General-purpose I-V Model for All Operating Modes of Deep Submicron MOSFETs

A simple general-purpose I-V model for all operating modes of deep-submicron MOSFETs is presented. Considering the most dominant short channel effects with simple equations including few extra parameters, a reasonable trade-off between simplicity and accuracy is established. To further improve the accuracy, model parameters are optimized over various channel widths and full range of operating v...

متن کامل

Propose, Analysis and Simulation of an All Optical Full Adder Based on Plasmonic Waves using Metal-Insulator-Metal Waveguide Structure

This paper proposes a full adder with minimum power consumption and lowloss with a central frequency of 1550nm using plasmonic Metal-Insulator-Metal (MIM)waveguide structure and rectangular cavity resonator. This full adder operates based onXOR and AND logic gates. In this full adder, the resonant wave composition of the firstand second modes has been used and we have ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014